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1. Rates of converzence in extreme value theory

Let F denote a probability distribution function and suppose there exist

constants a > 0 and b . for nl, and a non-degenerate distribution function Gn n

such that

lim Fn(anx + b n) = 0(x). (1.1)
n-cn

Then C may be taken to be one of the "three types"

A(x) = exp(-e-x), (1.2)I x < O. (a>O)

a = (1.3)

exp(-x -a) x > 0

exp (-(-x)). x < 0. (a > o)
a(X) =(1.4)

X >0.

Alternatively, 0 may be taken to be of "Generalized Extreme Value" form

Gx) = exp{-(l+-rx)+ 1""} (1.5)

where y+ = max(y.0) and - ( r ( : the case i = 0 interpreted as the limit

- -*0 . which is (1.2). The range of the distribution in this case is the set

R = (x: 1+7x > 0).

i.e. (--r1. -) if - > 0, (_,7-1) if -Y ( 0. (.-,) if r = 0. These results are

well known and we refer to the books of Galambos (1978) and Leadbetter,

Lindgren and Rootzbn (1983) for details.

Interest in rates of convergence started with the very early paper of

Fisher and Tippett (1928). They showed for normal extremes, that the

appropriate limit is (1.2). but they argued that a "penultimate" approximation

within the family (1.4) is better in practice. In the context of (1.5). this

is equivalent to saying that the limiting value ---0 is better replaced by a

sequence of values n' where Yn T 0 as n -.

The modern theory of rates of convergence may be considered to have begun

- 1'
-I 
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with the works of Anderson (1971, 1976) and Calambos (1978. Section 2.10).

They gave general formulae for computing pointwise rates of convergence. Since

then, the theory has developed in three main directions.

The first direction has been towards the computation of explicit upper

bounds for

sup IFn(a nx + bn) - GC(x)I (1.6)
x

when a .b are chosen appropriately. Hall and Wellner (1979) obtained thenn

sharp upper bound n- (2+n- )e - 2 when F is exponential, and Hall (1979) obtained

the bound 3(log n)-1 when F is normal, both with C = A. Davis (1982) combined

the Hall-Wellner result with the probability integral transform to obtain a

result for general F. but it requires rather detailed computations to apply it

to any particular case. The best results in this direction have been obtained

by Resnick (1986). who gave general results assuming essentially the von Mises

conditions, introduced in Section 2. An interesting alternative approach,

based on Zolotarev's method of Ideal metrics, is given by Zolotarev and Rachev

(1985), though this is currently confined to the 0aand *a limits.

The second direction of study stems from Anderson (1971). and is really

more concerned with the structure of the remainder term than with explicit

bounds. Smith (1982) derived uniform rates of convergence to 0 assuming a

"slow variation with remainder" condition

-log F(tx) -a
-log F(t) x (l+O(g(t)))

for each fixed x>O, where g(t) -1 0 at t -. m. A simple transformation allows

this approach also to be applied to a . Cohen (1982b) took rather a similar

approach to the limit A. starting with the de Haan (1970) representation

-log F(x) = c(x) exp {-I', a}3 dt} (x X),X f(t)

(c(x) -* cI, a(x) -# 1, f differentiable and f'(x) -+ 0). As was pointed out by

Anderson (1984), the alternative representation with a(t) E 1. due to Balkema

and de Haan (1972). allows some simplification of Cohen's results. In most

0,MM
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cases this approach leads to improved approximations for Fn . Rates of

convergence of the penultimate approximation have also been established (Cohen

1982ab. Gomes 1984). the normal case for instance being of O{(log n)-2 }. The

two directions for 0a have partly been brought together by Omey and Rachev

(1987).

The third direction of study concerns the extension of the problem from

statements about (1.1) or (1.6) to more general convergence criteria involving

the joint distribution of several largest order statistics and convergence of

densities instead of distribution functions. These considerations are

especially relevant for statistical applications. Reiss (1981) obtained an

asymptotic expansion for the distribution of the k largest order statistics

from the uniform distribution, with rates of convergence (see also Kohne and

Reiss. 1983) and Falk (1986) extended this to general distributions via the

probability integral transform. This would appear to be a very powerful

approach, though Falk's conditions are not easy to verify in particular cases.

Weissman (1984) took a different point of view, asking how fast k could grow

(as a function of n) for convergence to remain valid. Reiss (1984) pointed out

the importance of Hellinger distance for statistical applications.

The present work is aimed at partly unifying these different approaches,

both with a view to combining the results for the three domains of attraction.

and incorporating the approach of Reiss and Falk within the general scheme.

Convergence in Hellinger distance implies convergence in total variation

distance, which in turn implies uniform convergence of distribution functions.

Therefore it seems to us that Hellinger distance is the most appropriate

distance measure to use. The usefulness of Hellinger distance in statistical

applications is explained briefly in Section 3.

The structure of the paper is as follows. Section 2 develops the

approximations we use. The emphasis here is on having a single form of

improved approximation valid for all three types. We also extend the notion of
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penultimate approximation. In Section 3. proofs of convergence in Hellinger

distance are given. These cover both the classical and threshold forms of

extreme value approximation, and are expanded also to cover the joint

distribution of k largest order statistics (for fixed k). Finally in Section 4

we give numerical examples of our new approximations, demonstrating that they

really do make a considerable improvement on the classical extreme value

approximations.

2. Development of the approximations

Suppose F has density f(x) = dF(x)/dx defined on the range (x,,x ) where

x, = inf{x: F(x) > 01 - x = sup{x: F(x) ( I} .

Then we may write
0- l o g ~ x I  = x -f x d t

log F(x) = exp t. x < x < x (2.1)

where

O(x) = -F(x)logF(x) (2.2)

Sometimes we use the alternative representation

1-F(x) = exp {-J'x dt , xxw*t) (,x x<x (2.3)

where

(x) = -F(x) (2.4)
f(x)

Whichever form is adopted, we shall assume * is continuously differentiable and
lim* #'(x) = (2.5)

x TX

for some real i.

Equation (2.5) is one form of the well-known von Mises conditions which

are sufficient though not necessary for the domain of attraction of an extreme

value distribution (see de Haan (1976)). It makes no difference to the limit

which of the two definitions of * is adopted, and the limit is given by (1.5)

with the same -r. The precise significance of (2.5) has been given by Pickands

(1986): it is a necessary and sufficient condition for "twice-differentiable"I
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convergence, meaning that not only (1.1) holds but also convergence of the

corresponding densities and derivatives of the densities. Convergence of

densities alone has been studied also by Sweeting (1985). following de Haan and

Resnick (1982). For our present purposes, convergence of densities is relevant

but our main motivation for assuming (2.5) is mathematical tractability.

From (2.1) we have

-log F(u + x-(u)) x-log F(u) = e x dsus (2.6)

+Ns(u)) _ s
0() = 1 + #'(u + w#(u))dw. (2.7)

By the mean value theorem, for each s
(u+ s (u)
iN + (u) 1 + s'(y)

where y is between u and u + so(u). Consequently

J0 I (u) 1
O(u + sf(u)) 1 + so'(y)

is a continuous function of y, takes on both positive and negative values as y

ranges from u to u + xO(u) (unless #' is constant), and so is zero for at least

one y. Substituting in (2.6),

-log F(u + x*(u)) = (lx'() -/*'(y) (2.8)

- log F(u)

for some y between u and u-x*(u). Now let us define, for each n 1, bn such

that -log F(bn) = n (well-defined, since F is continuous) and let an = *(bn).

Substituting u = b in (2.8).* n

Fn(anx + bn) exp[-{1+xYn(x)} ] (2.9)

where -n (x) = #'(y). y being as in (2.8). If an x + b is outside the range

(x.,x ) then we interpret both sides of (2.9) to be 0 or 1 as appropriate.

Now suppose (2.5) holds, and let x be a fixed number in the range R

(recall (1.6)). It is easily verified from (2.5) that

lim ±Lu)= I (x I 0a); i(x* < w) (2.10)
U-M U Utx x -u

and hence that u + xO(u) T x uniformly over finite ranges of x as u T x

0%
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Thus (2.9) tends to (1.5) as n - w. This provides an independent proof of the

sufficiency of (2.5) for (1.1). but in a form particularly well suited for the

machinations to follow.

If we start with (2.3) in place of (2.1), then the argument is the same up

to (2.8). which now reads

1 - F(u + x#(u)) = + (2.11)
1 - F(u)

which in turn implies for x > 0 that

1

(1 + x7) . ( > 0 and " < 0. 0 < x < -7'
lim 1 - V(U + xo(u)) - (2.12)

uTx 0 (7 < O. x > -' - 1 )

This is the Ceneralised Pareto distribution introduced by Pickands (1975),

*which is particularly useful as a model of excesses over high thresholds. Some

statistical applications are given by Smith (1984, 1987), Davison (1984), Joe

(1987) and Hosking and Wallis (1987).

So far we have replaced #'(y) by -r. In some sense, however, what we are

doing is expanding the tail of F about u, so it may make more sense to

approximate #'(y) by #'(u). This is especially true if 1--0 for then, by virtue

of (2.10), u + x#(u) is (for fixed x as u T x') much closer to u than to x

Thus we replace -i in (1.5) by -n = #'(bn ), i in (2.12) by -(u) = #'(u). The

first of these is the penultimate approximation, precisely as it is defined by

Comes (1984) and equivalently to the definition of Cohen (1982b). Although

Cohen and Comes both prove that the penultimate approximation is better in

general than the ultimate approximation (in the sense of giving a faster rate

of convergence) they do not really give any motivation for considering it in

the first place. The foregoing may provide some. Moreover, it also suggests

that we could do the same thing when Y E 0. providing a penultimate

approximation in this case also. Some of the evidence given later will suggest

that this is an advantageous thing to do. So far as we are aware, this is the

0.n
Emu.~
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first time that a penultimate approximation has been suggested when V A 0.

If we want to go beyond this, the logical next step in view of (2.7) is to

consider an expansion of #'(u + w#(u)) about #'(u). At this point, however, we

interrupt the proceedings to give some examples. These will serve both to

illustrate what has been done so far, and to motivate the next step.

Example 1 Suppose x = +o and

-log F(x) = Cxa 1I+Dx 3 + O(x x - . (2.13)

where C, a. 3, e are positive constants and D is real. This includes nearly

all practical examples in the domain of attraction of 1.3), e.g. Pareto,

Cauchy, t. F. We assume the relation (2.13) is twice differentiable, in the

sense that we can differentiate term by term without affecting the order of the

0 0-term. It follows that
L + DP(P - 1) - - + O(x-13-e 2.4

a 2 x
a

Thus -Y = a-1 and the rate of convergence in (1.1) is 0((bn) - 0) = O(b1) -

n n
O(n-0/a ) as in Smith (1982). However, in the case 3 = 1 the second term in

(2.14) is 0 and so the rate of convergence is o(n- /a). Smith (1982) showed

the conventional approximation

Fn(bnx) -+ 0a(x) (F(b) = exp(-n - ))

achivesO(n-O/a) o-/a )

achieves for all 3 and. though a way of reducing this to o(n when

/3 = 1 was proposed, the construction is artificial. Incidentally, the rate of

O(n-13/a ) is optimal (amongst all choices of an bn) when 0 A 1.

Continuing from (2.14), we have when 1 g I

'(u + x*(u)) - #'(u) -DP(P - 1) u-P U{ + x Ou) )_~ 2 u
a

S. 2 E - I)(u- }[ .l_
.~(, 2usn (25 1) u[1 + x# (u))-i3 1] (2.15)

using (2.5) and (2.10).

If we start with l-F(x) in place of - log F(x) in (2.13). then the

corresponding results hold for the threshold approximation (2.12).

PII ,*.O
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Examle 2 Suppose x < - and

- log F(x) = C(x -x)a { + D(x*-x) + O((x*-x) 6)}. x T x (2.16)

(Ca.p,. positive. D real) and that this relation is twice differentiable. If

we replace F(x) by 1 - F(x *-x). this includes many distributions in the minimum

domain of attraction of the Weibull distribution, with applications to

reliability and elsewhere. In this case

1+ D( + ) (x*-x)P + O((x*-x) + ) (2.17)

a

-1
sor = -a and

@'u+ x@(u))-*'(u) ~D3(132+ 1) {(x _u-x*(u)) _ (x -u) }

D13(9 2 + 1) (x*-u)p {(l + xo'(u)) "- 1}. (2.18)

a

In this case the rate of convergence in (1.1) is O(n- u/a) and there is no
I

possibility of improving this by a different choice of a and b (Smith 1982)., n n

Again, if we start with 1 - F(x) in (2.16) then we get similar approximations

for the threshold distribution.

In neither example so far have we emphasized the penultinate

approximation, but numerical evidence of its efficacy will be given later.

Example 3 Let -Y = 0. If we slightly strengthen the conditions for what Cohen

(1982b) called Class N. then it is valid to make a Taylor expansion

#'(u + x*(u)) - #'(u) x*(u)O (u). (2.19)

Examples include most well-known distributions in the domain of attraction of

A. e.g. normal, log normal, gamma. Weibull, but not the exponential or logistic

distributions for which #' decreases exponentially fast. These are, in fact.

the most important cases to which the theory we are going to develop does not

apply, though since the reason is essentially that the convergence occurs too

quickly, we would argue that this exclusion is not of importance for

statistical applications.

I

- -,
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It is not obvious how to combine (2.15). (2.18) and (2.19) into a single

general formula. We shall, however, make a proposal. Define the family fo

functions on 0 ( x ( 00,

xu p -1 d

hp(X)= uP-ldu (2.20)
log x. p = .

This function often arises as a remainder term in the theory of slow variation

(Smith. 1982. Goldie and Smith 1987).

We assume that there exist real c and p and a non-negative function g.

with g(u) -* 0 as u T x . such that

li #'(u)fo'(u + wO(u)) - 0u) =
utx g(u)h (1 + we'(u)) = c.

for each w e R . We fuither assume that #'(x) is non-zero and of the same sign

for all sufficiently large x < x . and that p is either 0 or of the opposite

sign to #'. Examples:

/ DO2
Example 1 p = -P, g(u) =u-0, C DP- (P 1)

3
a

Example 2 p = P3. g(u) =(x * U),9' c Dp2113( p3 + 1)
a

Example 3 p undetermined, g(u) = O(u) I''(u)I, c = i 1.

Example 3 relies on h p(l+w#'(u)) wo'(u) as #'(u) -0 0. The fact that p is

undetermined in this case is not important, since the results we derive are

independent of p (in this case) up to the claimed order of approximation. Note

that we also allow c = 0. so the ( = 1 case of Example 1 is also included.

though in this case a more logical approach would presumably be to take the

next term in the expansion.

Substituting from (2.21) in (2.7) and then (2.6). setting u = b where

-log F(b) =n a = (bn). fn =,'(bn) r = g(bn) routine manipulations

n n % n%
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lead to

Fn(anx + b) = exp[-(l+X1n)+  n { + crnH (x. )}] + Orn) (2.22)

for each fixed x, where

, h (l+xj) + ph_l(l+xn) - (p+l)log(l+xn)3 , Pl+xii>O,

H p(x. 7) = P(P + 1)i3  (2.23)

0, 1+ x7n 0.

A rigorous derivation of (2.22) will be given in the next section. The cases

p = 0, p = -1 are defined by taking appropriate limits as

H_1 (x.i) - l+xj) -I log l+x77) + log(l+xj) - 2(l-(1+xn -I)

71

1 log (+xTI) - log(1+x-q) + l-(l+x7) -
23Ho (x -) 2 3

* 11

when x > 0. Note also that

3
0 HP(X-77) = x- (2.24)

confirming that, in the case 7n -+ 0. H p(X' ) in (2.22) may be replaced with

x 3/6 (independent of p) without affecting the claimed rate of convergence.

For the threshold approximation (2.12). we should start with (2.3) instead

of (2.1); the result then obtained is

1 - F(u + xO(u)) = {0 + x'(u)}1l- / '(u) {l+cg(u)H (x,*'(u))} (2.25)
1-F(u) + p

+ o(g(u))

for each x > 0.

3. Hellinger convergence

Define

F n (x) = F n(anx + bn). (

Gn(X) = exp[-(l+XYn)+  n {l+crn H(3(X.n)1])

In (2.22). we asserted that IFn(x)-Gn(x)I = o(rn) for each fixed x. It is

'natural to ask whether this result holds uniformly over all x.

This is not the only sense, however, in which the closeness of Fn and Gn

%le/' n ~ nrr ri -

.JP 4' *. S -,4pk ~ ,'~W ~ ' ' V
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could be measured. Another question is whether the densities fn = dF n/dx g

dG /dx converge uniformly at rate O(rn). If they do, then it follows from an

easy extension of Scheffe's Lemma that

sup If fn(x)dn - f g n (x)dxl = O(rn)' (3.2)
B B B

where the supremum is over all Borel sets B. This is the mode of convergence

used by Falk (1986). Another measure studied by Reiss (1984) is Hellinger

distance:

H(f,g) 1[{f2(x) - g1/ 2 (x)}2 dx] 1/2 (3.3)
nn = gnn n

If H(fn.gn) = O(rn) then (3.2) is immediate.

Equations (3.2) and (3.3) have direct statistical interpretation. For

example, if B is the rejection region of some test calculated under the

* assumption that gn is the correct distribution, then (3.2) says that the error

in the computed probability of rejection is at most o(r n). The importance of

Hellinger distance arises from the following inequality, pointed out by Reiss.

Suppose we have N independent observations from each of fn and gn, and let

f(N) g(N) denote the resulting joint densities. Then

1

Suppose H(f ng) o (r n) and n -),-, N -wsuch that Nm is bounded. Then
H( f(N)} g(N)) _+ 0

n n

so that the total variation distance between f(N) and g (N) is asymptoticallyIOn n

negligible. i.e. statistical calculations carried out as if gn was the correct

density remain valid when sampling from fn This provides an alternative

method of justifying statistical calculations based on extreme value

approximations, avoiding the awkward moment-convergence technicalities of

Goldie and Smith (1987), Smith (1987), Cohen (1987a, 1987b) and Joe (1987).

k The main additional condition needed to prove Hellinger convergence is

,Y -> . This condition is easily understood statistically, since when ( -2 2

the problem is non-regular and standard maximum likelihood techniques fail.

IA0
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Alternatives in these cases are proposed by Smith (1985, 1987).

For further information about Hellinger distance and total variation

distance we refer to Ibragimov and Has'minskii (1981) or Section 4.2 of LeCam

(1986). The following result is adapted from Theorem 7.6 of Ibragimov and

Has 'minskii:

Lemma 3.1 Let fo(x;O) denote a family of non-negative functions indexed by

1

N vector parameter 0 e . Let g (x;@) = fo(x.0) with gradient vector vg with

respect to 9. Suppose f1,f2 are two functions such that, for each x in a set

B. there exist Oi(x) (i=1.2) such that fi(x) = f(x; Oi(x)). Suppose 0i(x) e

a C 0 for each x a B. i=1.2. Then

1 1*2 2 2

(fYfl x)-f2(x)} dx s sup 1012 f sup Ivgo(x.O)I12dx. (3.4)
B xEB B 680

Remark 3.2 This differs from Ibragimov and Has'minskii in that 61 and 62

depend on x; i.e. fi do not have to be members of the family fo (x;) but only

close to it. Finiteness of the integral in (3.4) is closely related to the

boundedness (over 0*) of the trace of the Fisher information matrix.

Proof. We have
1 1

f2 () f2
f 1 cx) - f 2 (x) = go(x; el(x)) - go(x; 02 (x))1T

f0 1 (x) - 02 (x)T Vgo(Ol(x) + t(O2 (x) - el(x))} dt,

so that
. 1 1

2222

{f1(x) - f2 (x)} I6l(x) -92(x)1 fl Ivgo{el(x) + t(02(x) - el(x))}I2dt.

Now just integrate with respect to x.

We now come to our main result.

4 -!

0 Oc , . ."_": e ,. , e 2 ':_,'? ",, 'A".e .'L..e-,, . - . -.. ," ,-.-, . ",--"- ;
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Theorem 3.3 Suppose #, defined from (2.1). satisfies (2.5) with i > -1j. and
-1

(2.21) with its associated conditions. Define b n by F(b n) exp(-n- ), a n
#(bn = #*(b ). r n = g(b n). Define F n' Gn by (3.1) with associated density

f n gn Suppose there exist. for each u, variables sl(u) > 0. s2(u) < 0 such

that

1imm 21 +-1(~s~ 0. (3.5)
utx g 2(u)

imVexp[-{l + *'(u)s 2(u)' 0/l (3.6)

uTx g 2(u)

limw g(u)max[{1 + s#b(u)}P, (1 + s#'(u)- 1. log{1 + slb(u)}] 0 (3.7)
uT

*uniformly on s e~ (s 2(u). sl(u)). Define c(u~x) by

C(ux) = l'(u){lb(u + xlb(u)) - l(u)l
g(u) h P(1 + x#*(u))

and suppose also that

1imm c(u,s) = C (3.8)
Si, U Tx

uniformly on s E (s 2 (u), sl(u)). Then rnH( f'gn) -+ 0 as n-*.

Remark 3.4 The simplest way to demonstrate (3.5)-(3.8) is to define s 11 s2 by

(1 + #b(u)s1(U))- 1/0'(u) = g K (U)

exp[-{l + #*u, (u) , 1 /0-(u) I= g K(u

for some fixed K > 2, and then to show that (3.7), (3.8) hold for this choice

ofs1' 2* o (3.7), considering first the upper limit s T s 11 we have

g(u) (1 + 0l~ gu -K6#b(u)

so we require 1-K6#b(u) > > 0 as u I x . The only case that causes any

difficulty is whenv ( <0 and 6 = -1: then we do need -y > 1. The limit ass-

sis much easier since (1 + l'(u)s 2(u)}- 1/'U grows only logarithmically in

1/g(u). Thus (3.7) follows.

Now let us consider (3.8). breaking this up into cases -Y = 0, -y > 0, 7 <

4,I
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0. For - = 0. it suffices from (2.19) that

''(u + su)) -+ 1 uniformly on Isl K log I*(u)#"(u)I (3.9)
*' '(u)

for some K > 2. This is similar to several conditions in Cohen (1982b), and is

automatic if 0''(x) (in case x = or 0''(x ) (in case x < -) is

regularly varying. All of Cohen's "Class N" examples satisfy this.

For -Y > 0, assuming (2.13) it follows that the relative error in (2.15) is

O(u-6) if x >0, 0{up (u + xO(u)) - F } if x < 0. We must therefore show

uP{u + *(u)s2(u)}-13-6 -+0. (3.10)

But
#€~s 0(u){ ' (u)

u + *(u)s2(u) = (u) + *(u)s2(u)} + u{l - u0'(u)

= 0(ullog g(u)1-0 '(u)} + O(ug(u))

from which (3.10) follows.

For - < 0. assuming (2.16). a very similar argument settles (3.8) as

- s * s2 but we have an additional complication as s -+ s because of the

possibility u + sl(u)#(u) > x*. This is most easily settled by defining #'(x)
I -1

to be i whenever x > x * hp (x) to be -p whenever x < 0 (assuming p < 0).

Then it is easily seen that (3.8) holds.

Thus we would argue that (3.5)-(3.8) are reasonable assumptions which hold

in most examples, after excluding certain cases which have been noted earlier.

Proof of Theorem 3.3 First we show
*b' 1 1

fSl(bn)( n
() {fn(n) - gn(n)) 2dx = o(g 2(bn)) (3.11)

s2(bn) n

later extending the range of integration to (-ac).

* We may write

f (x) = nanf(anx + bn)Fn-1(anx + bn)

O(b n) -log F(an x + b n) -log F(an + bn)
-logF(b n)  (a nx + b n) exp - -log F(bn)

-logF~V

I0J .k
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O(b) ~ (b n)ds -z *(b n)ds }. (.2

0(b n+ x#(b n)~~' 0O #(b n+ s#(bn)) e j 0 *O(b n+ so(b)

By (2.7).

s~i~)) =1 +s~(u + (u.w)g(u)h (1 + w#'(u))

O(u) 0 0(u)

c1 (u-s)g(u)

* = 1+ so,(u) + 0().~h (1 + wo'(u))dw

where cl(u~s) is such that c1 - c uniformly on s e (s2(u). sl(u)). Evaluating

the integral we have

ON+ SONu)) { 1 + s0u) [1 + c1(U-s)g(u)
O(u) 'V (u)

I(1 + s.o.(ujj ( + so.(ujj- s(1 + sO'(U 1

Now (3.7) shows that this is of form (1 + s#O(u)}(l + o(1)) uniformly in s, s0

f or the reciprocal we have

ON) f 1 WNW 1 -1 c2(u. s)g(u)

O(u + sO(u)) #'(u)}

J(I_+ sO0(U))p + so'(u)) -1 SOl + sO 'u))-

I. *(u)p(p + 1) - ______

where c 2 is another function such that c 2(u's) -+ c uniformly on (s2(u), s1(u)).

This may also be written

+ O(u))- = Ji + x#'(u)} - c2(us)g(u)H (s,#'(u)) (3.13)

where H' is the derivative with respect to the first component of H

For later purposes. it is also convenient to write (3.13) in the form

0(u)~ - c(us)g(u)H;(s,#'(u))

O(u + sO(u)) u) I + c(us)g(u)H (s.0(u) (.4

where c 3 -+ c uniformly; this is equivalent to (3.13) because of (3.7).

Now take (3.13) and integrate:

fx 0(u)ds I ...... logfl + x#'(u)} g(u)Jxc (u.s)H'(s.#'(u))ds
0 0(u + s'A(ii)) 0' (u)02
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and hence

ex q (u)ds = 11 +
exp{-J 0  (u + sO(u))

{1 + g(u)c 4(u x)Hp(x,o'(u)) )  (3.15)

where c4 (ux) is yet another function satisfying c4 -* c uniformly on

(s2(u).sl(u)).

Define a new parametric family by

fo(x; 1 ,82 ) = exp[-(l+xi)- 1/lh1 + 61H(Xr)}).

{+ -1 2Hp(x)
+X(1 + 0)1 T 61H P(x.Ti))}( + xrj) 1 + 0 2H P(x -7)

where the parameters 77, which we shall identify with "in' and p are not shown

explicitly as parameters of f0

By (3.12), (3.14) and (3.15), we have

fn(X) = fo(x; c4 (b nx)r n c3 (bn x)rn).

But directly from (3.1) we have

gn (X) = fo(x; crn crn).

We have therefore set everything up to apply Lemma 3.1; we let go - f0 B

(s2 (b). sl(bn)) and take G* to be some small interval around (crn crn). The

only thing to show is that the integral in (3.4) is finite.

Consider first what happens as x -# s 1 (bn). Note that

f c%012  1 [8f012

I. aI - fo la'eii i1,2.

As x -+ s 1 we have fo ( + xI) Here we use to denote "is the

same order of magnitude as" and always keep in mind (3.7). Consider first

i <O. We have

af o  exp[-(l+xTI) - I/ q (I + 0lH (x.r)}j [(l+xr) - I/r/ H)(x r T
2/ -I 2H(x )

- ( + x )-2/Tr H (x.T)(l + 8H(X.Ti)] H(I + 0') - 1 + 2 H (x, )

p 1 P1+ 2 p*(~

V0
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the dominant term in which is j(l + c I - na/s-2 Hence

2

[ '. 4 ( I + x 
- n 1/7 +-3

which is integrable as 1 + "i' -,%0 because 17 > -1. very similar calculation

iA

22
shows that 32 is of the same order of magnitude. as 1 + 0 n 0.

Now suppose r>0. In this case s and we may assume p 0. Hence
af 0 1
ae +a +nd o (1 + X7) .

log 1 l + x
l (1 + og ( + xTO).

Similarly we have

f ~~ ~~~r N2()-2f xd S

0 - n nd+ n71d
So in this case the required integrals are finite for each 17 > 0 and even
uniformly as 71 -o 0.

Similar calculations may be made as x -# s2' but in this case there is no
problem because everything is decaying exponentially. Hence we conclude that
the integral in (3.4) is indeed bounded, so we deduce (3.11).

To complete the proof, It will suffice from

o 2 2 2 w 2 2fI fn~x gn(x)) dx f = f n(x)dx -2f s I f n(x)g(x)dx +f sIgn ~x
to show that 1 - Fn(s,(bn)) =o(r 2 ). I Gn(sl(b) = or2).adsmlryttn nn n onr) n dsmlrytaF (s(b ) and 2"s b are each o(r). In the case of G .these resultsn2nn2 n)n 

n1
follow directly from (3.5) and (3.6), also using (3.7) to show that the r nterm
in the definition of C nmay be ignored for the purpose of this comparison. In
the case of F~ n note that (3.15) is an expression for -log Fn (a + b ;using
(3.5), (3.6) and (3.7) again, the result follows. With this the proof of the
theorem is complete.
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A similar result is obtained for threshold convergence. We state the

following without proof:

Theorem 3.5 Suppose #. defined from (2.3), satisfies (2.5) with - > -and

(2.21). Define Fu .Gu by

F (x) = F(u + x#(u)) - F(u) ]
1 - F(u) (3.16)

u(X M 1 - (1 + xo'(u))-1/#'(u)[1 + cg(u)H (x.#'(u))]

(x > 0). with associated densities fu . g u Defining s2 (u) to be 0. suppose

s1(u) exists such that (3.5). (3.7) and (3.8) are satisfied. Then

g(u)H(f u.gu ) -+ 0 as u T x .

For the k largest order statistics (k fixed, n - =) it seems impossible to

avoid an additional error term of O(n- ) (cf. Falk 1986). This does not
I

matter, of course, if nrn -+ -. which is usually the case in practice. Also. in

this case, it does not matter whether we start with (2.1) or (2.3) as our

definition of *.

Theorem 3.6 Suppose the assumptions of Theorem 3.3 are satisfied, with *

defined from either (2.1) or (2.3). Let Yl:n .... Yn:n denote the order

statistics of a sample from F. and let X(n) = (Y - bn)/a for
i n-i+l:n n n

i=1.2.....k. where k is a fixed positive integer. Let fn(xl ..... Xk) denote the

joint density of X(n)..... (n) . Define

-1/-

'pn(x;o) = (1 + x n) n{l + OHp(X.-n)},

k
x= (I (-n(xi;crn)}exp(-\On(xk;crn)}.

defined when xl . 1 + xi n > 0 for each i. Then

-1
H(f n.gn) = o(r n ) + O(n

- ).

Proof. Assume * has been defined from (2.1). We have

fn(x (n-k)! I {anf(anxi+b ) Fn-kanxk + bn)

Xl .. .. xk.

I ~ W.4A.r Nj ~ W ~'~%% %~ -
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Let us first replace this by

k nanf(a nx I+ b)n

fnx 'Xk) = IT F(ax. +b T F Fr(axk+b ).
i= in I n

It is easy to see, by writing the likelihood ratio f'~/f in terms of uniform
nfn

order statistics, that H(f Jf is O(n- ). Define 4oi as above,

P- (____ -) GH(x, )
(x;G) n +~~(8  (l x'r) lGpxn)

Now, using (3.14) and (3.15),

n..............xk)=

kr #(b n) logF(b n+x I (b) n r logF(b n+xk#(bn))
17 #(b + xi#(b) log F(b ) ~ j log F(bn)

* k
iU {f n(x I c 3 (b nxi)r )4P(xi; c4 (b nxi )r)exp{-,n(xk; c4 (b nxk)r)}.

We also have

k

.....................xk) = U (En (x ;cr )O(xi: crn) )exp{-4n(xk;cr n)}.

The proof is now similar to that of Theorem 3.3, in that we define a

2k-parameter family

f~x...xk; e(l). 6(2)) = k (2)()

with parameters O()= (O6J). 6.Oi)). j 1.2. We apply Lemmna 3.1 with

kB = (s2 (bn). sl(bn)) . The proof that the Integral in (3.4) is bounded is

similar to the corresponding proof in Theorem 3.3. and the extension from B to

P k is also similar. With this the proof of Theorem 3.6 is complete.

4. Examp~les

Three examples will be used to illustrate the foregoing theory. These are

normal maxima, lognormal minima and minima from a Gamma distribution with index

a>l. The last two are treated by reflecting about the origin so as to use the

At



20

theory for maxima. All three examples have nr and this allows us to make

two small changes in the procedures without affecting the claimed rates of

convergence. These are to define # from (2.3) instead of (2.1), and to define

bn by F(b) = 1-n- 1 instead of exp(-n-). Since we are involving the normal

distribution, we use 0 to denote the standard normal distribution function but

keep # in the sense in which it has been used throughout the paper. The normal

density will be written V(x) = (2r)- /2exp(-x 2/2).

With # and b as just defined, we may writen

an = #(b) = (nf(bn)}- (4.1)
#(b n )f'(b n)

= -(b n f(b) - 1. (4.2)
n ' bn) =  f(bn)""

We define an = cg(bn), which is taken to be #(bn)' '(bn) when F is in the

domain of attraction of A. In this case, further application of (4.2) gives

2 + a 2"V (x) .(4.3)

6 n = n n n( f(x) )  x=b

Experience has shown that it is important to use the exact constants; even

minor variations on the foregoing scheme upset the comparisons to follow.

Normal distribution Take F = 0, f(x) = 0'(x) and so

f'(x) =-x, = -1-1
f(x) [f(x)

We define bn by l(b ) 1-n- I application of (4.1)-(4.3) yields

a =n- 1(2r) exp(b2/2).
n n

Sn = a b -1,
+72 +a2

n n n n

The expansion (I - O(x))/O'(x) = x -x + 3x -... shows that *(x) ~ x

#'(X) ~ -x - , (x)#''(x) x- Since b = 0((log n) ) we have that then

rates of convergence of the ultimate and penultimate approximations are

0((Iog n)- . O((log n)-2.

V
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Lojxnormal distribution Take F(x) = 0(-a-1logjxi) for x < 0. where a > 0. In

this case

f(x) = a- IxI1(2r)"1
2 exp{- (loglxI) 2

-f()= IxF'l(i + a-2 log 1Ib,
_1'~ ~ { -xja -2+ a-2 loglxi}.

Hlence with B nsatisfying O(B n 1-n'. we have

b n= -exp(-arB n).

a n' 1alb 1(2r) 1/2 x(B 2/2).
n ni n

=y -a nIbIl'{1 -a- 1B}n - 1.

e= 1 2 , ' - a 2 lb 1-2 11 _ a-2 + a-2lOgjb 1)
n n n n n n

Since *(x) -a 2 Ixl(glI)-l' #,(x) _a2(logjxj)-l. *(x)#''(x) a 4 Goglxh)3

the rates of convergence are 0(B- 1 0{(log n)- 1/} for the ultimate

approximation, 0(B 3) = O(log n) -3/2 1for the penultimate approximation.n

Gamma distribution Take f(x) = Ixlaxlex/F(a) for x < 0. where a > 1. In this

case

-'X 1 a-i
f(x) - - 1

3o with b nsatisfying l-F(b n n -1 we have

a n = n 'lb n r-a'exp(b I)'(a).

I n = a n(lb njl(a-l)-l} 1

p . a ~ n = 21b n1a2 (a +

The values for p and a follow from the expansion l-F(x)=

(a'a) ll(aal-ll +.)ofteor (III2.31) wt 1

{a -1l~~~~~allx 
-}o h or 21)wt 3 =

-a(a+) . Then we take p =/,cg(u) = _UPppl)a as in Section 2.

Figure 1 shows the exact density for normal maxima with n=100. together

with our three approximations. i.e. (1.5) with -v = 0. (1.5) with i1-=Vn and

(2.22). All three approximations are close to the true density, but the first

approximation Is perceptibly the worst of the three, and the third

approximation the best. Table 1 gives more details of the exact and three

I6 1 11 ? II . P J
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approximate distributions, including mean, variance, skewness and kurtosis of

each, and three measures of discrepancy between the approximations and exact

densities: the uniform or Kolmogorov-Smirnov distance (1.6). the Hellinger

distance (3.3) and total variation distance which, in the same notation as

(3.3). is calculated by

V(fn , gn) = £{fn(X) - gn(x)}+dx (4.4)

The calculations confirm our overall claim about the ranking of the three

approximations. Also shown are the corresponding calculations for the

threshold distribution, i.e. (2.12) with i,0 (exponential distribution), (2.12)

with -Y = -Yn' (2.25). It is noticeable that the first approximation is very

poor when assessed by skewness and kurtosis, but much better when assessed by

the other criteria. This is mainly responsible for the adverse comments made

by Fisher and Tippett (1928). who took skewness and kurtosis as their main

criterion of fit. It also warns of the danger in using moments for statistical

comparison.

Figure 2 and Table 2 show corresponding calculations for the lognormal

distribution with a = 1. n = 250. We took a larger sample size here because of

the poorer overall fit. The most striking thing here is that the first

approximation is very much worse than the other two. Note also -Y = -0.4422n

- a long way from its limiting value -r = 0.

* Figure 3 and Table 3 are for the Gamma distribution with a--5. n=lO0. For

the first approximation in this case we took

Fn(x) exp{-(x/bn)a}. x < 0

* equivalent to the classical two-parameter Weibull approximation usually assumed

in this situation. Figure 3 shows strikingly how poor it is. The other two

approximations are indistinguishable from the true density, except in one tail.

Finally, in Table 4 we give calculations for the normal distribution at

sample sizes n=lOm , m=l.5. The decrease in distance from approximate to

exact agrees very well with the theoretical rates of decay, of 0{(log n)-l,
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O{(log n)-2 )} and 0{(log n)-3 }, for the three approximations.

Acknowledgement

This paper was written during a visit to the Center for Stochastic

Processes, University of North Carolina, Chapel Hill. I would like to thank

Ross Leadbetter for the invitation, and the staff of the Center for their

hospitality. I also thank Jonathan Cohen, Rolf Reiss and Ishay Weissman for

sending me copies of unpublished papers.

REFERENCES

Anderson, C.W. (1971), Constributions to the Asymptotic Theory of Extreme
Values. Ph.D. Thesis, University of London.

Anderson, C.W. (1976). Extreme value theory and its approximations. Proc.
Symp. Reliability Technology. U.K. Atomic Energy Authority, Bradford.

Anderson. C.W. (1984). Large deviations of extremes. In Statistical Extremes
and Applications, J. Tiago de Oliveira (ed), Reidel, Dordrecht, 325-340.

Balkema, A.A. and Haan, L. de (1972), On R. Von Mises' condition for the domain

of attraction of exp(-eX). Ann. Math. Statist. 43, 1352-1354.

Cohen, J.P. (1982a), The penultimate form of approximation to normal extremes.
Adv. Appl. Prob. 14, 324-339.

Cohen, J.P. (1982b), Convergence rates for the ultimate and penultimate
approximations in extreme value theory. Adv. Appl. Prob. 14, 833-854.

Cohen, J.P. (1987a), Large sample theory for fitting an approximate Gumbel
model to maxima. Sankhya A 48, 372-392.

Cohen, J.P. (1987b), Fitting extreme value distributions to maxima. Preprint,
University of Kentucky.

Davis, R.A. (1982). The rate of convergence in distribution of maxima. Stat.
Neerlandica 36, 31-35.

Davison, A.C. (1984). Modelling excesses over high thresholds, with an
application. In Statistical Extremes and Applications, J. Tiago de Oliveira

% (ed.), Reidel, Dordrecht, 461-482.

Falk, M. (1986), Rates of uniform convergence of extreme order statistics. Ann.
Inst. Statist. Math. 38, 245-262.

INA%



24

Fisher, R.A. and Tippett, L.H.C. (1928). Limiting forms of the frequency
distributions of the largest or smallest member of a sample. Proc. Camb. Phil.
Soc. 24, 180-190.

Galambos. J. (1978). The Asymptotic Theory of Extreme Order Statistics. Wiley.
New York.

Coldie, C.M. and Smith, R.L. (1987), Slow variation with remainder: Theory and
Application. Quart. J. Math. Oxford (2) 38, 45-71.

Comes, M.I. (1984). Penultimate limiting forms in extreme value theory. Ann.
Inst. Statist. Math. 36, 71-85.

Haan, L. de (1970). On Regular Variation and its Application to the Weak
Convergence of Sample Extremes. Mathematical Centre Tracts No. 32, Amsterdam.

Haan, L. de and Resnick, S. (1982). Local limit theorems for sample extremes.
Ann. Probab. 10, 396-413.

Hall, P. (1979), On the rate of convergence of normal extremes. J. Appl. Prob.
16, 433-439.

Hall, P. (1980), Estimating probabilities for normal extremes. Adv. Appl. Prob.
* 12, 491-500.

Hall, W.J. and Wellner, J.A. (1979), The rate of convergence in law of the
maximum of an exponential sample. Statist. Neerlandica 33, 151-154.

Hosking, J.R.M., and Wallis, J.R. (1987). Parameter and quantile estimation for
the generalized Pareto distribution. Technometrics 29, 339-349.

Ibragimov, I.A. and Has'minskii, R.Z. (1981). Statistical Estimation. Springer,
% Berlin.

Joe, H. (1987). Estimation of quantiles of the maximum of N observations.
Biometrika, 74. 347-354.

%Kohne, W. and Reiss, R.-D. (1983). A note on uniform approximation to extreme
order statistics. Ann. Inst. Statist. Math. 35, 343-345.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1983). Extremes and Related
@ Properties of Random Sequences and Series. Springer Verlag. New York.

LeCam, L. (1986). Asymptotic Methods in Statistical Decision Theory.
Springer-Verlag. New York.

Pey. E. and Rachev S.T. (1987). On the rate of convergence in extreme value
S.. theory. To appear.

Pickands, J. (1986). The continuous anid differentiable domains of attraction of
the extreme-value distributions. Ann. Probab. 14, 996-1004.

Reiss. R.-D. (1981), Uniform approximation to distribution of extreme order
statistics. Ad. Appl. Prob. 13, 533-547.

Reiss, R.-D. (1984). Statistical inference using appropriate extreme value
--- models. Preprint 124. University of Siegen.

Ot0



25

Resnick, S. (1986). Uniform rates of convergence to extreme value
distributions. In J. Srivastava (ed.), Probability and Statistics; Essays in
Honor of Franklin A. Graybill. North Holland. Amsterdam.

Smith, R.L. (1982). Uniform rates of convergence in extreme value theory. Adv.
Appl. Prob. 14, 600-622.

Smith, R.L. (1984), Threshold methods for sample extremes. In Statistical
Extremes and Applications, J. Tiago de Oliveira (ed.), 621-638. Reidel,
Dordrecht.

Smith, R.L. (1985). Maximum likelihood extimation in a class of non-regular
cases. Biometrika 72, 67-92.

Smith, R.L. (1987), Estimating tails of probability distributions. Ann.
Statist., September 1987.

Sweeting, T.J. (1985). On domains of uniform local attraction in extreme value
theory. Ann. Probab. 13, i96-205.

Weissman, I. (1984), On the asymptotic distribution of an unbounded number of
sample extremes. Preprint, Technion, Haifa.

Zolotarev, V.M. and Rachev, S.T. (1985). Rate of convergence in limit theorems
for the max-scheme. In, Lecture Notes in Mathematics #1155, Springer, Berlin,
415-442.

F



TABLE 1

STANDARD NORMAL DISTRIBUTION, n = 100.

LOCATION CONST = 2.3263; SCALE CONST = .3752; GAMMA = -. 1271
RHO = 1.0; EPSILON = .0298

I. DISTRIBUTION OF SAMPLE MAXIMA

EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: 2.518 2.553 2.511 2.517
VARIANCE: .184 .232 .175 .187
SKEWNESS: .429 1.298 .276 .422
KURTOSIS: 3.765 5.399 3.309 3.709
KOLM-SMIR DIST: .0272 .0052 .0027
TOTAL VARIATION DIST: .0390 .0065 .0041
HELLINGER DIST: .083 .026 .011

II. THRESHOLD DISTRIBUTION

EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: .344 .380 .338 .345
VARIANCE: .097 .141 .088 .098
SKEWNESS: 2.529 4.001 2.004 2.512
KURTOSIS: 6.302 9.001 5.246 6.129
KOLM-SMIR DIST: .0311 .0055 .0013
TOTAL VARIATION DIST: .0311 .0055 .0014
HELLINGER DIST: .073 .026 .009
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TABLE 2

LOG NORMAL DISTRIBUTION, SIGMA = 1, n = 250.

LOCATION CONST = -. 0705; SCALE CONST = .0238; GAMMA = -. 4422
RHO = 1.0; EPSILON = .0557

I. DISTRIBUTION OF SAMPLE MAXIMA

*EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: -. 0635 -.0563 -. 0639 -. 0636
VARIANCE: .00053 .00093 .00050 .00053
SKEWNESS: .174 1.298 .226 .208
KURTOSIS: 3.088 5.400 2.993 3.121
KOLM-SMIR DIST: .1117 .0137 .0053
TOTAL VARIATION DIST: .1450 .0151 .0062
HELLINGER DIST: .325 .085 .070

II. THRESHOLD DISTRIBUTION
-- - - - - - - - - - - - -

EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: .0179 .0248 .0175 .0179
VARIANCE: .00016 .00057 .00014 .00016
SKEWNESS: .63 4.01 .44 .55

KURTOSIS: 2.96 9.01 2.59 2.76
KOLM-SMIR DIST: .1262 .0143 .0051

4TOTAL VARIATION DIST: .1262 .0143 .0051
HELLINGER DIST: .303 .084 .072

%



TABLE 3

GAMMA DISTRIBUTION, ALPHA = 5, n = 100.

LOCATION CONST = -1.2791; SCALE CONST = .3222; GAMMA = -. 3147
RHO = 1.0; EPSILON = .0381

I. DISTRIBUTION OF SAMPLE MAXIMA

EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: -1.165 -1.173 -1.170 -1.167
VARIANCE: .104 .072 .100 .105
SKEWNESS: .0009 .0646 .0127 .0039
KURTOSIS: 2.834 2.880 2.715 2.808
KOLM-SMIR DIST: .0539 .0078 .0031
TOTAL VARIATION DIST: .1027 .0117 .0066
HELLINGER DIST: .155 .060 .039

II. THRESHOLD DISTRIBUTION

EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: .2505 .2142 .2461 .2504
VARIANCE: .040 .032 .037 .040
SKEWNESS: 1.055 1.400 .810 .980
KURTOSIS: 3.687 4.200 3.210 3.484
KOLM-SMIR DIST: .0758 .0081 .0032
TOTAL VARIATION DIST: .0785 .0109 .0040
HELLINGER DIST: .100 .059 .037

09



TABLE 4

STANDARD NORMAL DISTRIBUTION

DISTRIBUTION OF MAXIMA

FIT OF THREE APPROXIMATIONS FOR VARIOUS SAMPLE SIZES

1ST APPR 2ND APPR 3RD APPR

SAMPLE SIZE 10

KOLM-SMIR DIST: .052 .026 .028
TOTAL VARIATION DIST: .0789 .0350 .0351
HELLINGER DIST: .1404 .1024 .0876

SAMPLE SIZE 100

KOLM-SMIR DIST: .0272 .0052 .0027
TOTAL VARIATION DIST: .0390 .0065 .0040
HELLINGER DIST: .083 .026 .011

SAMPLE SIZE 1,000

KOLM-SMIR DIST: .01825 .00236 .00039
TOTAL VARIATION DIST: .02595 .00273 .00067
HELLINGER DIST: .0576 .0122 .0026

SAMPLE SIZE 10,000

KOLM-SMIR DIST: .01368 .00133 .00017
TOTAL VARIATION DIST: .01930 .00157 .00020
HELLINGER DIST: .0433 .0070 .0011

SAMPLE SIZE 100,000

KOLM-SMIR DIST: .01092 .00085 .00009
TOTAL VARIATION DIST: .01531 .00101 .00010
HELLINGER DIST: .0345 .0045 .0006

-0.
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FICURE 2: DENSITY OF SAM'PE 11IITF~A FOR LOGNORYAL DISTRIB3UTION. a ,n =250.
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FIGURE 3: DENSITY OF SAITLE PTIMUA FOR CAMY'A DISTRIBUTION., 5, n 100.

p The 1st approximation is the curve visibly removed from the others; the

exact density and the 2nd and 3rd approximations are virtually indistinguishable.
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